Y10 Maths Knowledge Organiser Foundation Tier: Expressions and Formulae

What must I be able to do?	Key vocabulary	
New content: Expand a double bracket (two binomials) to give a quadratic expression	Binomial	An algebraic expression with just 2 terms e.g. $3 x+4$
Sparx 4768 Factorise a quadratic expression into two linear brackets Sparx 4178, 4858, 4963	Quadratic	An algebraic expression where the highest power is 2 e.g. $x^{2}+3 x$

Expanding a linear bracket

Multiply all terms inside the bracket by the term in front of the bracket being careful with any negative numbers
e.g. $\quad 4(3 a-6)=12 a-24$
as $4 \times 3 a=12 a$ and $4 \times-6=-24$

Substitution

Replace letters with their known values and then work out the answer
e.g. Given that $a=4, b=5, c=-6$

$$
\begin{aligned}
& \text { then } a+b=4+5=9 \text { and } \\
& a c+2 b=4 \times-6+2 \times 5=-24+10=-14
\end{aligned}
$$

Remember that 2 terms with no sign between mean that you multiply them so $2 b$ means $2 \times b$ and ac means $a \times c$

Identify equations, expressions, formulae and identities

collection of terms with no equals sign			more than one variable and an equals sign	
	Expression	Equation	Formula	Identity
$3 x+4$	\checkmark		-	
$3 x+4=12$		\checkmark	I	
$P=4 x$			\checkmark	
$3 x+12 \equiv 3(x+4)$				${ }^{\checkmark}$
Has an equals sign and only one unknown. can be solved.			Has the 3 lines \equiv in the middle instead of an =	

Factorising linear expressions

Factorising is the opposite of expanding a bracket. Find the largest common factors of all terms and divide by these. The factors are put in front of the bracket.
e.g. $\quad 12 x+4=4(3 x+1)$
$25 y+15=5(5 y+3)$
$18 a^{2}-4 a=2 a(9 a-2)$

Expanding a double bracket

Method 1 - "smiley face"
Draw loops between each pair and multiply the two values at the end of the loops together

$2 x \times 3 x=6 x^{2}$
$4 \times 3 x=12 x$
$12 x+10 x=22 x$
$2 x \times 5=10 x$
$4 \times 5=20$
So $6 x^{2}+22 x+20$

Method 2 - Separate the brackets

In this method we split the pair of brackets back into single ones

$$
\begin{aligned}
&(2 x+4)(3 x+5) \\
&= 2 x(3 x+5)+4(3 x+5) \\
&=6 x^{2}+10 x+12 x+20 \\
&=6 x^{2}+22 x+20
\end{aligned}
$$

Method 3 - Grid

Set the expansion out as a multiplication grid

$$
(2 x+4)(3 x+5)
$$

	$3 x$	+5
$2 x$	$-6 x^{2}$	$10 x$
+4	$--12 x$	20

So $6 x^{2}+22 x+20$

Changing the subject of a formula

This follows the same rules as when solving equations. Always do the inverse (opposite) to leave the subject on its own. e.g. make u the subject of the formula

$$
\begin{aligned}
& 4=2 u+3 p \\
& 4-3 p=2 u \\
& \frac{4-3 p}{2}=u
\end{aligned}
$$

$\div 2 \& \frac{4-3 p}{2}=u$

e.g. make c the subject of the formula

$$
m=5(c-1)
$$

There are 2 options here:

Method 1: expand the bracket first

Method 2: divide by the coefficient first

Tip - examiners tell schools that method 1 usually has a higher success rate in an exam than method 2 does!

GLUE

