410 Maths Knowledge Organiser Foundation Tier: Non-linear graphs

What must I be able to do?	Key vocabulary	
New content: Solve a quadratic equation by factorising \rightarrow Sparx U228, U960 \square Recognise and plot cubic, exponential and reciprocal graphs > Sparx U980, U229,U593	Root Turning point	The values of x in a quadratic equation which give a value of $y=0.0 \mathrm{na}$ graph, this is where it crosses the x-axis.
		On a quadratic graph, the turning point is the maximum or minimum point on the curve.

Solving by factorising

Step 1: Rearrange the equation so that one side is equal to 0
Step 2: Factorise the equation
Step 3: Solve each factor equal to 0 .
e.g. Solve $x^{2}-6 x+10=2$

$$
\begin{aligned}
& x^{2}-6 x+8=0 \\
& (x-4)(x-2)=0 \\
& \text { Either } x-4=0 \text { or } x-2=0 \\
& x=4 \text { and } x=2
\end{aligned}
$$

e.g. Solve $2 x^{2}-5 x-3=0$

$$
(2 x+1)(x-3)=0
$$

$$
\text { Either } \begin{aligned}
2 x+1 & =0 \text { or } x-3=0 \\
2 x & =-1 \\
x & =-\frac{1}{2} \text { and } x=3
\end{aligned}
$$

Plotting and using quadratic graphs

e.g. a) Complete the table of values for $4=x^{2}+4 x$ and plot the graph

x	-6	-4	-2	0	2
y	12	0	-4	0	12

$y=(-6)^{2}+4 x-64^{\text {a }}$ As a quadratic graph is symmetrical,
$y=36-24=12 \quad$ you will often see repeating values of y

estimates for the solutions of $x^{2}+4 x=9$

We already have the graph of $y=x^{2}+4 x$

We draw on to the same axis the graph of
$y=9$
Where the 2 graphs intersect (cross) we read off the two x values.

So $x=1.5$ and $x=-5.5$

As it is a sketch, there is no need to plot any points accurately. The graph should be symmetrical about the y-axis and just label the crossing point.

Equations of other types of graphs

cubic graphs:

$$
y=x^{3}
$$

$y=x^{3}+3 x^{2}-2$

Has a maximum of two turning points.
y-axis goes from negative to positive.

Exponential graphs

$$
y=2^{x}
$$

$$
y=3^{x}
$$

All basic exponential curves will pass through the coordinate $(0,1)$.

Reciprocal graphs

$$
y=\frac{1}{x}
$$

With all of these graphs you need to be able to plot one if given the equation and a table of points to complete.

GLUE HERE

