What must I be able to do?	Key vocabulary	
New content: Know the interior and exterior angle sums of a polygon Mathswatch 123 (GCSE) Use bearings to identify directions > Mathswatch 124 (GCSE)	Interior angle	An angle inside a polygon
	Exterior Angle	An "outside" angle created by extending one side of a polygon in a straight line
	Bearing	An angle which is measured clockwise from North and written as 3 digits.

Triangle properties

Types of angles

Angle facts

Angles at a point on a straight line sum to 180°

$$
x=180-130
$$

$$
x=50^{\circ}
$$

Angles around a point sum to 360°

Vertically opposite angles are equal

$$
\begin{array}{ll}
x=110^{\circ} \\
y=70^{\circ}
\end{array}
$$

Angles inside a triangle sum to 180°

Angles inside any quadrilateral sum to 360°

The dashes tell you which sides are equal

- 3 equal sides
- 3 equal angles
- 3 lines of symmetry
- 2 equal sides
-

2 equal base angles

- 1 line of symmetry

Scalene

- no equal sides
- no equal angles
- no lines of symmetry

Quadrilateral properties

- 4 equal sides
- Opposite sides are parallel
- 4 right angles
- 4 lines of symmetry
- Opposite sides are equal
- Opposite sides are parallel
- 4 right angles
- 2 lines of symmetry

- 4 equal sides
- Opposite sides are parallel
- Opposite angles are equal
- 2 lines of symmetry

2 pairs of equal sides 2 equal angles 1 line of symmetry

- One pair of parallel sides
i. symmetry
- 2 pairs of equal sides

- No lines of symmetry

Angles on parallel lines

One angle is against the top parallel line and the other

corresponding angles are equal (F shape)

Allied angles sum to 180°
(C shape)
These are also called co-interior angles

Angles in trapezia and parallelograms

As a trapezium and a parallelogram have a pair of parallel sides, the angles at each end form a pair of allied angles which sum to 180°

Trapezium -2 pairs of allied angles

Parallelogram - 4 pairs of allied angles

Bearings

In this example we would say the bearing of B from A is 110° rather than the bearing from A to B is 110°.

If we know the bearing of B from A is 94° then we can calculate the bearing of A from B by extending the line between the points.

The bearing of A from B is $94+180=274^{\circ}$.

Angles in polygons

Any individual interior angle + its exterior angle will always sum to 180°

The sum of interior angles of a polygon depends on the number of sides:

Shape	Number of Sides	Sum of interior angles	Each individual interior angle if the shape is regular
Triangle	3	180°	$180^{\circ} \div 3=60^{\circ}$
Quadrilateral	4	360°	$360^{\circ} \div 4=90^{\circ}$
Pentagon	5	540°	$540^{\circ} \div 5=108^{\circ}$
Hexagon	6	720°	$720^{\circ} \div 6=120^{\circ}$
Heptagon	7	900°	$900^{\circ} \div 7=128.57 . .^{\circ}$
Octagon	8	1080°	$1080^{\circ} \div 8=135^{\circ}$
Nonagon	9	1260°	$1260^{\circ} \div 9=140^{\circ}$
Decagon	10	1440°	$1440^{\circ} \div 10=144^{\circ}$
Undecagon	11	1620°	$1620^{\circ} \div 11=147.27 \ldots 0^{\circ}$
Dodecagon	12	1800°	$1800^{\circ} \div 12=150^{\circ}$
\ldots	\ldots	\ldots	\ldots
Any polygon	n	$(n-2) \times 180^{\circ}$ where n is the number of sides	$(n-2) \times 180^{\circ} \div n$

The exterior angles of any polygon will always sum to 360°

If the shape is regular then each exterior angle can be
calculated by doing $360 \div n$

GLUE HERE

