What must I be able to do?	Key vocabulary	
New content:	Simultaneous	Two equations which have two
\square Solve simultaneous linear equations using the elimination method	equations	unknowns. A single solution is true for both equations.
$>$ Sparx 4760		
Solve simultaneous linear equations using a substitution method Sparx 4757 Solve simultaneous linear equations using graphs Sparx 4836	coefficient	A numerical or constant value multiplying a variable in an algebraic expression e.g. 4 in $4 x$.

Elimination Method

To solve simultaneous equations using an elimination method one of the two variables must have the same coefficient (ignoring plus/minus signs)
e.g. $3 x$ and $3 x$ or $3 x$ and $-3 x$.

Step 1: Multiply one or both equations to scale one of the variables to have the same coefficient (ignoring signs).

Step 2: Add or subtract the equations to eliminate the variable.

Step 3: Solve the remaining equation in one unknown.
Step 4: Substitute the value found back into one of the original equations and solve for the second unknown.
e.g. Solve:

$$
\begin{array}{ll}
3 x+4 y=27 & (\text { equation } 1) \\
2 x-5 y=-5 & \text { (equation } 2)
\end{array}
$$

As neither the x nor the y have the same coefficients, we need to scale up by multiplying. 6 is the LCM of 2 and 3 .

Equation $1 \times 2 \quad 6 x+8 y=54 \quad$ (equation 3)
Equation $2 \times 3 \quad 6 x-15 y=-15 \quad$ (equation 4)
We now have the x with the same coefficient. To
eliminate $6 x$ and $6 x$ we need to subtract them.
Equation 3 -equation 4 (being careful of $84--154$)

$$
\begin{aligned}
23 y & =69 \\
y & =3
\end{aligned}
$$

Substituting $y=3$ back into equation 1

$$
\begin{aligned}
3 x+4 \times 3 & =27 \\
3 x+12 & =27 \\
3 x & =15 \\
x & =5
\end{aligned}
$$

Therefore the solutions are $x=5$ and $y=3$.

Substitution Method

To solve simultaneous equation using a substitution method, we first need to rearrange one of the equations so that has one of the variables as the subject e.g. $4=3 x+8$ has y as the subject.

Step 1: Make one of the variables the subject.
Step 2: Substitute this into the second equation.
Step 3: Solve the second equation in one unknown.
Step 4: Substitute the value found back into one of the original equations and solve for the second unknown.
e.g. Solve:

$$
\begin{array}{ll}
4-2 x=17 & \text { (equation 1) } \\
3 y+4 x=66 & (\text { equation } 2)
\end{array}
$$

Rearrange equation 1 to have y the subject $(y=\ldots)$:

$$
y=2 x+17
$$

Substitute $2 x+17$ into the second equation in the place of 4

$$
\begin{array}{r}
3(2 x+17)+4 x=66 \\
6 x+51+4 x=66 \\
10 x+51=66 \\
10 x=15 \\
x=1.5
\end{array}
$$

Substituting $x=1.5$ back into equation 1

$$
\begin{aligned}
4-2 \times 1.5 & =17 \\
4-3 & =17 \\
4 & =20
\end{aligned}
$$

Therefore the solutions are $x=1.5$ and $y=20$.
This method will be used more often when one of the equations is a quadratic or a circle, rather than both being linear.

Solving simultaneous linear equations using graphs

The graphs $y=2 x+3$ and $3 y+2 x=5$ are shown on the grid.

By using the graph, solve the simultaneous equations
$y=2 x+3$
$3 y+2 x=5$

The solution to simultaneous equations when drawn as graphs is just where the 2 graphs intersect (cross).

In this instance they cross at $(-0.5,2)$
So the solutions are $x=-0.5,4=2$

GLUE

 HERE