<u>Y1D Maths Knowledge Organiser Higher Tier: Vectors</u>

What must I be able to do?		Key yocabulary	
New content:		Vector	A quantity which has magnitude
\Box Understand and use vector notation			and <u>direction</u> .
> Sparx U632			
\Box Calculate the magnitude of a vector			
\Box Calculate and represent graphically the sum of two vectors		Scalar	A quantity which has size but
► Sparx U903			not direction e.g. 3
\Box Calculate the resultant of two vectors			
Sparx U903			
\Box Use a scalar multiple of a vector			
Sparx U564	Sparx U564		The length of a vector.
Solve geometric problems in two dimensions using vectors			theorem
Sparx U781	Sparx U781		
Apply vector methods for simple geometric proofs			
Sparx U560			
Column Vectors This is the vector (4) Add/subtract vectors:			
$\frac{1}{1}$			
Vectors are often written as column vectors		$\binom{3}{4} - \binom{3}{6} = \binom{3}{-2}$	
Left or right (3) Multiply vectors by a sc		iply vectors by a scalar constant	
UP of NOWN >	It goes 4 units righ	1+	$3\binom{4}{7} = \binom{12}{24}$
ana 1 unit up. (21)			
Vector Geometry			
Often, a vector will be defined in a more abstract way and the actual details of the direction are not known.			
E.g. these are the vectors \mathbf{a} and \mathbf{b} .			
Important facts to know which can be used in a geometric proof.			
• Two vector sums (addition/subtraction) which start and end at the same point must be equal			
• Two vectors which are parallel and equal in length can be represented using the same letter			
e.g. If the base of a square is the vector \mathbf{a} so is the top of the square			
• Two vectors which are multiples of each other must be parallel			
e.g. 3a and 2a are both parallel as they are both multiples of a			
This also applies to vector addition so $\mathbf{a} + \mathbf{b}$ is parallel to $3(\mathbf{a} + \mathbf{b})$			
• If two vectors are parallel and pass through the same point, then they must lie on the same straight line			
e.g. if you can show that the vector from points A to B, i.e. \overrightarrow{AB} is parallel to the vector \overrightarrow{AC} then points A, B and C must lie on the same line as they both pass through point A.			
We would call vectors \overrightarrow{AB} and \overrightarrow{AC} colinear			