
 1

Craig’n’Dave

COMPUTATIONAL THINKING

These ways of thinking help you to solve problems.

Aspect Definition Meaning Theoretical positives / Negatives Simple examples

Thinking abstractly Removing unnecessary details
and including only the relevant
details.

Identifying what does and doesn’t matter
to solving the problem.

The idea of layering or levels of a
problem.

Deciding what variables & objects will be
needed.

+ Simplifies the problem / interface.

+ Less computation / data.

+ Easier to see how the solution to one
problem can also be the solution to another.

- Models will not be as accurate.

Icons / symbols on a map.

Charting data.

Moving nodes on a graph data
structure to change how it looks.

Thinking ahead Identifying the preconditions of
a system: inputs, outputs, and
reusable components.

What you need to know before you can
solve the problem.

The state of data for an algorithm to
work.

Identifying what data is required before
it is needed (caching)

Identifying reusable program
components.

+ Caching can speed up a process.

- Caching can be complicated to implement.

- Caching requires the correct data to be
fetched for the next instruction.

Working out how much paint you
need before starting to decorate.

Getting your debit card out before
it is needed to be scanned.

Sorting data for a binary search.

Thinking procedurally Breaking a problem down. Identifying several smaller sub-problems.

Determine the order of events.

+ Problems are easier to solve.

+ Debugging is easier.

Generating a subject grade requires
putting marks into a system, before
applying a grade boundary, before
printing results.

 2

Craig’n’Dave

- May not be entirely possible with an event
driven rather than procedural approach to
programming.

Thinking logically Identifying individual steps and
decision points of an algorithm.

Identify the points at which a selection or
iteration is needed.

Determine the conditions of the
decision.

Determine the next steps depending on
the outcome of the decision.

+ Makes writing an algorithm easier.

+ The complexity of an algorithm can be
determined.

+ Algorithms can be simplified, or better
solutions found more easily.

+ Identifies branches for testing.

Happens after thinking
procedurally. Using a flowchart or
pseudocode to identify the
individual steps of an algorithm.

Thinking concurrently More than one process
happening at the same time.

Identifying parts of the problem can be
executed at the same time.

+ Increase in speed.

- May be difficult to program.

- Can result in deadlock.

- Problem may not suit concurrency.

When building a house, ordering
the windows, while putting up the
walls.

Playing sound in a game while
taking user inputs.

Multiple images downloading for a
webpage.

