
Maths and Further Maths – Y11 to Y12 Transition Work 

Welcome to A-level Maths! 

This booklet contains everything you need to hit the ground running when the course starts. 

The beginning of A-level heavily relies on GSCE algebra skills. The hardest algebra topics at 

GCSE, often only understood by a handful of grade 9 students, will very quickly become the 

easiest parts of the A-level. We will look at these topics very briefly at the start of the 

course, but on the assumption that you just need a quick recap. 

Of course, our entry requirements don’t require you to have achieved that level of success 

at GCSE. We ask for a minimum of a grade 6 for Maths (recommended 7), and a minimum of 

a grade 7 for Further Maths (recommended 8). 

As such, most students will finish the GCSE with gaps in key areas, and the booklet is 

designed to allow you to fill these gaps before the course starts. The topics chosen are those 

which form the foundations of the entire Pure part of the A-level. The A-level course is fast-

paced, and you can get left behind very quickly if these key skills aren’t in place. 

We realise the booklet is huge. We don’t expect you to do every single question! 

Have a look through each topic – there are examples, basic practice questions and 

extensions in each – and make sure you are fluent in each of these key areas. In particular, if 

there are topics you know you struggled with at GCSE, study them over the summer! 

• Surds and rationalising the denominator 

• Rules of indices 

• Factorising expressions 

• Completing the square 

• Solving quadratics by factorisation 

• Solving quadratics by completing the square 

• Solving quadratics by using the formula 

• Solving linear simultaneous equations using the elimination method 

• Solving linear simultaneous equations using the substitution method 

• Solving linear and quadratic simultaneous equations 

• Straight line graphs 

• Parallel and perpendicular lines 

• Rearranging equations 



 

 

Surds and rationalising the denominator 

Key points 

 A surd is the square root of a number that is not a square number, for example 2, 3, 5,  

 Surds can be used to give the exact value for an answer. 

 ab a b    and  
a a

b b
  

 To rationalise the denominator means to remove the surd from the denominator of a fraction. 

 To rationalise
a

b
 you multiply the numerator and denominator by the surd b  

 To rationalise 
a

b c
 you multiply the numerator and denominator by b c  

Examples 

Example 1 Simplify 50  

50 25 2    

 

25 2

5 2

5 2

 

 



 

1  Choose two factors of 50. One must 

be a square number 

2 Use the rule ab a b   

3 Use 25 5  

Example 2 Simplify 147 2 12  

147 2 12

49 3 2 4 3



   
 

 

 

 

49 3 2 4 3     

7 3 2 2 3      

7 3 4 3   

3 3  

1 Simplify 147  and 2 12 . Choose 

two numbers that are factors of 147 

and two numbers that are factors of 

12. One of each pair of factors must 

be a square number 

2 Use the rule ab a b   

3 Use 49 7  and 4 2  

 

4 Collect like terms 

Example 3 Simplify   7 2 7 2   

  7 2 7 2   

= 49 7 2 2 7 4    

 

= 7 – 2 

= 5 

 

1  Expand the brackets. A common 

mistake here is to write  
2

7 49  

 

2 Collect like terms: 

7 2 2 7

         7 2 7 2 0

 

   
 

 
 



 

 

Example 4 Rationalise 
1

3
 

1

3
 = 

1 3

3 3
  

 

       =
1 3

9


    = 

3

3
 

1 Multiply the numerator and 

denominator by 3  

2 Use 9 3  

Example 5 Rationalise and simplify 
2

12

 

2

12
 = 

2 12

12 12
  

 

       = 
2 4 3

12

 
 

 

 

 

 

       = 
2 2 3

12
 

 

       = 
2 3

6
 

1 Multiply the numerator and 

denominator by 12  

 

2 Simplify 12  in the numerator. 

Choose two numbers that are factors 

of 12. One of the factors must be a 

square number 

 

3 Use the rule ab a b   

4 Use 4 2  

5 Simplify the fraction: 

2

12
 simplifies to 

1

6
 

 

Example 6 Rationalise and simplify 
3

2 5

 

3

2 5
 = 

3 2 5

2 5 2 5




 
 

= 
 

  

3 2 5

2 5 2 5



 
 

= 
6 3 5

4 2 5 2 5 5



  
 

= 
6 3 5

1




 

= 3 5 6  

1 Multiply the numerator and 

denominator by 2 5  

 

 

 

2 Expand the brackets 

 

 

 

3 Simplify the fraction 

 

 

 

4 Divide the numerator by −1 

      Remember to change the sign of all 

terms when dividing by −1 



 

 

Practice 

1 Simplify. 

 a 45   b 125    

 c 48   d 175   

 e 300   f 28    

 g 72   h 162   

 

2 Simplify. 

 a 72 162   b 45 2 5    

 c 50 8   d 75 48    

 e 2 28 28   f  2 12 12 27     

 

3 Expand and simplify. 

 a  ( 2 3)( 2 3)   b  (3 3)(5 12)    

 c  (4 5)( 45 2)   d  (5 2)(6 8)    

 

4 Rationalise and simplify, if possible. 

 a 
1

5
  b 

1

11
   

 c 
2

7
  d 

2

8
  

 e 
2

2
  f 

5

5
   

 g 
8

24
  h 

5

45
  

5 Rationalise and simplify. 

 a 


1

3 5
 b 



2

4 3
  c 



6

5 2
 

 

 

Hint 

One of the two 

numbers you 

choose at the start 

must be a square 

number. 

Watch out! 

Check you have 

chosen the highest 

square number at 

the start. 



 

 

Extend 

6 Expand and simplify   x y x y   

7 Rationalise and simplify, if possible. 

 a 
1

9 8
 b 

1

x y
 

 

 

Answers 

1 a 3 5   b 5 5    

 c 4 3   d 5 7   

 e 10 3   f 2 7   

 g 6 2   h 9 2   

2 a 15 2   b 5   

 c 3 2   d 3   

 e 6 7   f 5 3     

3 a −1 b 9 3  

  c 10 5 7   d 26 4 2    

4 a 
5

5
  b 

11

11
  

 c 
2 7

7
  d 

2

2
  

 e 2   f 5    

 g 
3

3
  h 

1

3
  

5 a 
3 5

4
 b 

2(4 3)

13
  c 

6(5 2)

23
  

6 x − y 

7 a 3 2 2  b 




x y

x y
 



 

 

Rules of indices 

Key points 

 am × an = am + n 

 
m

m n

n

a
a

a

   

 (am)n = amn 

 a0 = 1 

 
1

nna a  i.e. the nth root of a 

  
m

m
n m nna a a   

 
1m

m
a

a

    

 The square root of a number produces two solutions, e.g. 16 4  . 

Examples 

Example 1 Evaluate 100 

100 = 1 Any value raised to the power of zero is 

equal to 1 

Example 2 Evaluate 

1

29  

1

29 9  

 = 3 

Use the rule 

1

nna a  

Example 3 Evaluate 

2

327  

 
2

2
3327 27

 

 = 
23  

 = 9 

1 Use the rule  
m

m
nna a  

2 Use 
3 27 3  

 
 

Example 4 Evaluate 
24

 

2

2

1
4

4

 
 

 
1

16
  

1 Use the rule 
1m

m
a

a

   

2 Use 
24 16  



 

 

Example 5 Simplify 

5

2

6

2

x

x
 

5

2

6

2

x

x
 = 3x3 6 ÷ 2 = 3 and use the rule 

m
m n

n

a
a

a

  to 

give 
5

5 2 3

2

x
x x

x

   

Example 6 Simplify 
3 5

4

x x

x


 

3 5 3 5 8

4 4 4

x x x x

x x x


   

 

 = x8 − 4 = x4 

1 Use the rule m n m na a a    

 

2 Use the rule 
m

m n

n

a
a

a

  

Example 7 Write 
1

3x
 as a single power of x 

11 1

3 3
x

x

  Use the rule 
1 m

m
a

a

 , note that the 

fraction 
1

3
 remains unchanged 

Example 8 Write 
4

x
 as a single power of x 

1
2

1

2

4 4

      4

x x

x






 
1 Use the rule 

1

nna a  

2 Use the rule 
1 m

m
a

a

  

Practice 

1 Evaluate. 

 a 140 b 30 c 50 d x0 

2 Evaluate. 

 a 

1

249   b 

1

364  c 

1

3125  d 

1

416  

3 Evaluate. 

 a 

3

225  b 

5

38  c 

3

249  d 

3

416  



 

 

4 Evaluate. 

 a 5–2 b 4–3 c 2–5 d 6–2 

5 Simplify. 

 a 
2 3

2

3

2

x x

x


  b 

5

2

10

2

x

x x
 c 

3

3

3 2

2

x x

x


 d 

3 2

5

7

14

x y

x y
  

 e 
1
2

2y

y y
 f 

1
2

3
22

c

c c
 g 

 
3

2

0

2

4

x

x
 h 

31
2 2

2 3

x x

x x




 

6 Evaluate. 

 a 

1

24


 b 

2

327


 c 

1

329 2


  

 d 

1

3416 2  e 

1

29

16


 
 
 

 f 

2

327

64


 
 
 

 

7 Write the following as a single power of x. 

 a 
1

x
  b 

7

1

x
 c 4 x  

 d 
5 2x  e 

3

1

x
 f 

3 2

1

x
 

8 Write the following without negative or fractional powers. 

 a 3x  b x0 c 

1

5x  

 d 

2

5x  e 

1

2x


 f 

3

4x


 

9 Write the following in the form axn. 

 a 5 x  b 
3

2

x
 c 

4

1

3x
 

 d 
2

x
 e 

3

4

x
 f 3 

Extend 

10 Write as sums of powers of x. 

 a 
5

2

1x

x


 b 

2 1
x x

x

 
 

 
 c 

4 2

3

1
x x

x

  
 

 
 

Watch out! 

Remember that 

any value raised to 

the power of zero 

is 1. This is the 

rule a0 = 1. 



 

 

Answers 

1 a 1 b 1 c 1 d 1 

2 a 7 b 4 c 5 d 2 

3 a 125 b 32 c 343 d 8 

4 a 
1

25
 b 

1

64
 c 

1

32
  d 

1

36
 

5 a 
33

2

x
 b 5x2  

 c 3x d 
22

y

x
 

 e 

1

2y  f c–3  

 g 2x6 h x 

6 a 
1

2
 b 

1

9
 c 

8

3
 

 d 
1

4
 e 

4

3
 f 

16

9
 

7 a x–1 b x–7 c 

1

4x  

 d 

2

5x  e 

1

3x


 f 

2

3x


 

8 a 
3

1

x
 b 1 c 5 x  

 d 
5 2x  e 

1

x
 f 

4 3

1

x
 

9 a 

1

25x  b 2x–3 c 41

3
x  

 d 

1

22x


 e 

1

34x


 f 3x0 

10 a 3 2x x  b 3x x  c 2 7x x   

  



 

 

Factorising expressions 

Key points 

 Factorising an expression is the opposite of expanding the brackets. 

 A quadratic expression is in the form ax2 + bx + c, where a ≠ 0. 

 To factorise a quadratic equation find two numbers whose sum is b and whose product is ac. 

 An expression in the form x2 – y2 is called the difference of two squares. It factorises to 

(x – y)(x + y). 

 

Examples 

Example 1 Factorise 15x2y3 + 9x4y 

15x2y3 + 9x4y = 3x2y(5y2 + 3x2) The highest common factor is 3x2y. 

So take 3x2y outside the brackets and 

then divide each term by 3x2y to find 

the terms in the brackets 

 

Example 2 Factorise 4x2 – 25y2 

4x2 – 25y2  = (2x + 5y)(2x − 5y) This is the difference of two squares as 

the two terms can be written as 

(2x)2 and (5y)2 

 

Example 3 Factorise x2 + 3x – 10 

b = 3, ac = −10 

 

 

So x2 + 3x – 10 = x2 + 5x – 2x – 10 

 

 = x(x + 5) – 2(x + 5) 

 

 = (x + 5)(x – 2) 

1 Work out the two factors of 

ac = −10 which add to give b = 3  

(5 and −2) 

2 Rewrite the b term (3x) using these 

two factors 

3 Factorise the first two terms and the 

last two terms 

4 (x + 5) is a factor of both terms 

 

  



 

 

 

Example 4 Factorise 6x2 − 11x − 10 

b = −11, ac = −60 

 

So  

6x2 − 11x – 10 = 6x2 − 15x + 4x – 10 

 

 = 3x(2x − 5) + 2(2x − 5) 

 

 = (2x – 5)(3x + 2) 

1 Work out the two factors of 

ac = −60 which add to give b = −11 

(−15 and 4) 

2 Rewrite the b term (−11x) using 

these two factors 

3 Factorise the first two terms and the 

last two terms 

4 (2x − 5) is a factor of both terms 

 

Example 5 Simplify 

2

2

4 21

2 9 9

x x

x x

 

 
 

2

2

4 21

2 9 9

x x

x x

 

 
 

 

For the numerator: 

b = −4, ac = −21 

 

So 

x2 − 4x – 21 = x2 − 7x + 3x – 21 

 

 = x(x − 7) + 3(x − 7) 

 

 = (x – 7)(x + 3) 

 

For the denominator: 

b = 9, ac = 18 

 

So  

2x2 + 9x + 9 = 2x2 + 6x + 3x + 9 

 

 = 2x(x + 3) + 3(x + 3) 

 

 = (x + 3)(2x + 3) 

So  
2

2

4 21 ( 7)( 3)

( 3)(2 3)2 9 9

x x x x

x xx x

   


  
 

 = 
7

2 3

x

x




 

1 Factorise the numerator and the 

denominator 

 

 

2 Work out the two factors of 

ac = −21 which add to give b = −4 

(−7 and 3) 

3 Rewrite the b term (−4x) using these 

two factors 

4 Factorise the first two terms and the 

last two terms 

5 (x − 7) is a factor of both terms 

 

6 Work out the two factors of  

ac = 18 which add to give b = 9  

(6 and 3) 

 

7 Rewrite the b term (9x) using these 

two factors 

8 Factorise the first two terms and the 

last two terms 

9 (x + 3) is a factor of both terms 

 

10 (x + 3) is a factor of both the 

numerator and denominator so 

cancels out as a value divided by 

itself is 1 

 

  



 

 

Practice 

1 Factorise. 

 a 6x4y3 – 10x3y4 b 21a3b5 + 35a5b2 

 c 25x2y2 – 10x3y2 + 15x2y3 

2 Factorise 

 a x2 + 7x + 12 b x2 + 5x – 14 

 c x2 – 11x + 30 d x2 – 5x – 24 

 e x2 – 7x – 18 f x2 + x –20 

 g x2 – 3x – 40 h x2 + 3x – 28 

3 Factorise 

 a 36x2 – 49y2 b 4x2 – 81y2   

 c 18a2 – 200b2c2 

4 Factorise 

 a 2x2 + x –3 b 6x2 + 17x + 5 

 c 2x2 + 7x + 3 d 9x2 – 15x + 4 

 e 10x2 + 21x + 9  f 12x2 – 38x + 20 

5 Simplify the algebraic fractions. 

 a 
2

2

2 4x x

x x




  b 

2

2

3

2 3

x x

x x



 
 

 c 
2

2

2 8

4

x x

x x

 


 d 

2

2

5

25

x x

x




 

 e 
2

2

12

4

x x

x x

 


 f 

2

2

2 14

2 4 70

x x

x x



 
 

6 Simplify 

 a 
2

2

9 16

3 17 28

x

x x



 
 b 

2

2

2 7 15

3 17 10

x x

x x

 

 
 

 c 
2

2

4 25

10 11 6

x

x x



 
 d 

2

2

6 1

2 7 4

x x

x x

 

 
 

Extend 

7 Simplify 2 10 25x x   

8 Simplify 
2 2

2

( 2) 3( 2)

4

x x

x

  


  

Hint 

Take the highest 

common factor 

outside the bracket. 



 

 

Answers 

1 a 2x3y3(3x – 5y) b 7a3b2(3b3 + 5a2) 

 c 5x2y2(5 – 2x + 3y) 

2 a (x + 3)(x + 4) b (x + 7)(x – 2) 

 c (x – 5)(x – 6) d (x – 8)(x + 3) 

 e (x – 9)(x + 2) f (x + 5)(x – 4) 

 g (x – 8)(x + 5) h (x + 7)(x – 4) 

3 a (6x – 7y)(6x + 7y) b (2x – 9y)(2x + 9y) 

 c 2(3a – 10bc)(3a + 10bc) 

4 a (x – 1)(2x + 3) b (3x + 1)(2x + 5) 

 c (2x + 1)(x + 3) d (3x – 1)(3x – 4) 

 e (5x + 3)(2x +3)  f 2(3x – 2)(2x –5) 

5 a 
2( 2)

1

x

x




  b 

1

x

x 
 

 c 
2x

x


 d 

5

x

x 
 

 e 
3x

x


 f 

5

x

x 
 

6 a 
3 4

7

x

x




 b 

2 3

3 2

x

x




 

 c 
2 5

2 3

x

x




 d 

3 1

4

x

x




 

7 (x + 5) 

8 
4( 2)

2

x

x




  

 

  



 

 

Completing the square 

Key points 

 Completing the square for a quadratic rearranges ax2 + bx + c into the form p(x + q)2 + r  

 If a ≠ 1, then factorise using a as a common factor. 

 

Examples 

Example 1 Complete the square for the quadratic expression x2 + 6x − 2 

x2 + 6x − 2 

 

= (x + 3)2 − 9 − 2 

 

= (x + 3)2 − 11 

1 Write x2 + bx + c in the form 
2 2

2 2

b b
x c

   
     

   
 

2 Simplify 

 

Example 2 Write 2x2 − 5x + 1 in the form p(x + q)2 + r 

2x2 − 5x + 1 

 

 

 

= 2 5
2 1

2
x x

 
  

 
 

 

= 

2 2
5 5

2 1
4 4

x
    

      
     

 

 

= 

2
5 25

2 1
4 8

x
 

   
 

 

 

 

 

= 

2
5 17

2
4 8

x
 

  
 

 

1 Before completing the square write 

ax2 + bx + c in the form 

2 b
a x x c

a

 
  

 
 

2 Now complete the square by writing 

2 5

2
x x  in the form 

2 2

2 2

b b
x

   
    

   
 

 

3 Expand the square brackets – don’t 

forget to multiply 

2
5

4

 
 
 

by the 

factor of 2 

4 Simplify 

  



 

 

Practice 

1 Write the following quadratic expressions in the form (x + p)2 + q 

 a x2 + 4x + 3 b x2 – 10x – 3 

 c x2 – 8x d x2 + 6x 

 e x2 – 2x + 7 f x2 + 3x – 2 

2 Write the following quadratic expressions in the form p(x + q)2 + r 

 a 2x2 – 8x – 16 b 4x2 – 8x – 16 

 c 3x2 + 12x – 9 d 2x2 + 6x – 8 

3 Complete the square. 

 a 2x2 + 3x + 6 b 3x2 – 2x 

 c 5x2 + 3x d 3x2 + 5x + 3 

 

Extend 

4 Write (25x2 + 30x + 12) in the form (ax + b)2 + c. 

 

Answers 

1 a (x + 2)2 – 1 b (x – 5)2 – 28 

 c (x – 4)2 – 16 d (x + 3)2 – 9 

 e (x – 1)2 + 6 f 

2
3 17

2 4
x

 
  

 
  

2 a 2(x – 2)2 – 24 b 4(x – 1)2 – 20 

 c 3(x + 2)2 – 21 d 

2
3 25

2
2 2

x
 

  
 

 

3 a 

2
3 39

2
4 8

x
 

  
 

 b 

2
1 1

3
3 3

x
 

  
 

 

 c 

2
3 9

5
10 20

x
 

  
 

 d 

2
5 11

3
6 12

x
 

  
 

 

4 (5x + 3)2 + 3 



 

 

Solving quadratics by factorisation 

Key points 

 A quadratic equation is an equation in the form ax2 + bx + c = 0 where a ≠ 0. 

 To factorise a quadratic equation find two numbers whose sum is b and whose products is ac. 

 When the product of two numbers is 0, then at least one of the numbers must be 0. 

 If a quadratic can be solved it will have two solutions (these may be equal). 

Examples 

Example 1 Solve 5x2 = 15x 

5x2 = 15x 

 

5x2 − 15x = 0 

 

 

5x(x − 3) = 0 

 

So 5x = 0 or (x − 3) = 0 

 

 

Therefore x = 0 or x = 3 

1 Rearrange the equation so that all of 

the terms are on one side of the 

equation and it is equal to zero.  

Do not divide both sides by x as this 

would lose the solution x = 0. 

2 Factorise the quadratic equation.  

5x is a common factor. 

3 When two values multiply to make 

zero, at least one of the values must 

be zero. 

4 Solve these two equations. 

Example 2 Solve x2 + 7x + 12 = 0 

x2 + 7x + 12 = 0 

 

b = 7, ac = 12 

 

x2 + 4x + 3x + 12 = 0 

 

x(x + 4) + 3(x + 4) = 0 

 

(x + 4)(x + 3) = 0 

So (x + 4) = 0 or (x + 3) = 0 

 

 

Therefore x = −4 or x = −3 

1 Factorise the quadratic equation. 

Work out the two factors of ac = 12 

which add to give you b = 7.  

(4 and 3) 

2 Rewrite the b term (7x) using these 

two factors. 

3 Factorise the first two terms and the 

last two terms. 

4 (x + 4) is a factor of both terms. 

5 When two values multiply to make 

zero, at least one of the values must 

be zero.  

6 Solve these two equations. 

Example 3 Solve 9x2 − 16 = 0 

9x2 − 16 = 0 

(3x + 4)(3x – 4) = 0 

 

So (3x + 4) = 0 or (3x – 4) = 0 

 

4

3
x    or 

4

3
x   

1 Factorise the quadratic equation. 

This is the difference of two squares 

as the two terms are (3x)2 and (4)2. 

2 When two values multiply to make 

zero, at least one of the values must 

be zero. 

3 Solve these two equations. 



 

 

Example 4 Solve 2x2 − 5x − 12 = 0 

b = −5, ac = −24 

 

 

 

So 2x2 − 8x + 3x – 12 = 0 

 

2x(x − 4) + 3(x − 4) = 0 

 

(x – 4)(2x + 3) = 0 

So (x – 4) = 0 or (2x +3) = 0 

 

4x   or 
3

2
x    

1 Factorise the quadratic equation. 

Work out the two factors of ac = −24 

which add to give you b = −5.  

(−8 and 3) 

2 Rewrite the b term (−5x) using these 

two factors. 

3 Factorise the first two terms and the 

last two terms. 

4 (x − 4) is a factor of both terms. 

5 When two values multiply to make 

zero, at least one of the values must 

be zero.  

6 Solve these two equations. 

Practice 

1 Solve 

 a 6x2 + 4x = 0 b 28x2 – 21x = 0 

 c x2 + 7x + 10 = 0 d x2 – 5x + 6 = 0 

 e x2 – 3x – 4 = 0 f x2 + 3x – 10 = 0 

 g x2 – 10x + 24 = 0 h x2 – 36 = 0 

 i x2 + 3x – 28 = 0 j x2 – 6x + 9 = 0 

 k 2x2 – 7x – 4 = 0 l 3x2 – 13x – 10 = 0 

2 Solve 

 a x2 – 3x = 10 b x2 – 3 = 2x 

 c x2 + 5x = 24 d x2 – 42 = x 

 e x(x + 2) = 2x + 25 f x2 – 30 = 3x – 2 

 g x(3x + 1) = x2 + 15 h 3x(x – 1) = 2(x + 1) 

Answers 

1 a x = 0 or x = 
2

3
   b x = 0 or x = 

3

4
 

 c x = –5 or x = –2 d x = 2 or x = 3 

 e x = –1 or x = 4 f x = –5 or x = 2 

 g x = 4 or x = 6 h x = –6 or x = 6 

 i x = –7 or x = 4 j x = 3 

 k x = 
1

2
  or x = 4 l x = 

2

3
  or x = 5 

2 a x = –2 or x = 5 b x = –1 or x = 3 

 c x = –8 or x = 3 d x = –6 or x = 7 

 e x = –5 or x = 5 f x = –4 or x = 7 

 g x = –3 or x = 2
1

2
 h x = 

1

3
  or x = 2 

Hint 

Get all terms 

onto one side 

of the equation. 



 

 

Solving quadratics by completing the 

square 

Key points 

 Completing the square lets you write a quadratic equation in the form p(x + q)2 + r = 0. 

Examples 

Example 5 Solve x2 + 6x + 4 = 0. Give your solutions in surd form. 

x2 + 6x + 4 = 0 

 

(x + 3)2 − 9 + 4 = 0 
 

(x + 3)2 − 5 = 0 

(x + 3)2 = 5 

 

x + 3 = 5  

 

x = 5 3   

 

So x = 5 3   or x = 5 3  

1 Write x2 + bx + c = 0 in the form 
2 2

0
2 2

b b
x c

   
      

   
 

2 Simplify. 

3 Rearrange the equation to work out 

x. First, add 5 to both sides. 

4 Square root both sides.  

Remember that the square root of a 

value gives two answers. 

5 Subtract 3 from both sides to solve 

the equation.  

6 Write down both solutions. 

Example 6 Solve 2x2 − 7x + 4 = 0. Give your solutions in surd form. 

2x2 − 7x + 4 = 0 

 

2 7
2 4

2
x x

 
  

 
 = 0 

 
2 2

7 7
2 4

4 4
x

    
      

     

 = 0 

 

 

 

 
2

7 49
2 4

4 8
x

 
   

 
 = 0 

2
7 17

2
4 8

x
 

  
 

 = 0 

 

2
7 17

2
4 8

x
 

  
 

 

 

1 Before completing the square write 

ax2 + bx + c in the form 

2 b
a x x c

a

 
  

 
 

 

2 Now complete the square by writing 

2 7

2
x x  in the form 

2 2

2 2

b b
x

a a

   
    

   
 

 

3 Expand the square brackets. 
 

 

4 Simplify. 

 

(continued on next page) 

5 Rearrange the equation to work out 

x. First, add 
17

8
 to both sides. 

 



 

 

2
7 17

4 16
x
 

  
 

 

7 17

4 4
x     

17 7

4 4
x     

So 
7 17

4 4
x    or 

7 17

4 4
x    

6 Divide both sides by 2. 
 

 

7 Square root both sides. Remember 

that the square root of a value gives 

two answers. 

8 Add 
7

4
 to both sides. 

 

9 Write down both the solutions. 

 

Practice 

3 Solve by completing the square. 

 a x2 – 4x – 3 = 0 b x2 – 10x + 4 = 0 

 c x2 + 8x – 5 = 0 d x2 – 2x – 6 = 0 

 e 2x2 + 8x – 5 = 0 f 5x2 + 3x – 4 = 0 

4 Solve by completing the square. 

 a (x – 4)(x + 2) = 5 

 b 2x2 + 6x – 7 = 0 

 c x2 – 5x + 3 = 0 

 

Answers 

3 a x = 2 + 7 or x = 2 – 7  b x = 5 + 21  or x = 5 – 21  

 c x = –4 + 21  or x = –4 – 21  d x = 1 + 7  or x = 1 – 7  

 e x = –2 + 6.5  or x = –2 – 6.5  f x = 
3 89

10

 
 or x = 

3 89

10

 
 

4 a x = 1 + 14  or x = 1 – 14  b x = 
3 23

2

 
 or x = 

3 23

2

 
 

 c x = 
5 13

2


 or x = 

5 13

2


 

  

Hint 

Get all terms 

onto one side 

of the equation. 



 

 

Solving quadratics by using the formula 

Key points 

 Any quadratic equation of the form ax2 + bx + c = 0 can be solved using the formula 

2 4

2

b b ac
x

a

  
   

 If b2 – 4ac is negative then the quadratic equation does not have any real solutions. 

 It is useful to write down the formula before substituting the values for a, b and c. 

Examples 

Example 7 Solve x2 + 6x + 4 = 0. Give your solutions in surd form. 

a = 1, b = 6, c = 4 

2 4

2

b b ac
x

a

  
  

 

 

26 6 4(1)(4)

2(1)
x

  
  

6 20

2
x

 
  

6 2 5

2
x

 
  

 

3 5x     

 

So 3 5x     or 5 3x    

1 Identify a, b and c and write down 

the formula.  

Remember that 2 4b b ac    is 

all over 2a, not just part of it. 

 

2 Substitute a = 1, b = 6, c = 4 into the 

formula. 

 

3 Simplify. The denominator is 2, but 

this is only because a = 1. The 

denominator will not always be 2. 

4 Simplify 20 . 

20 4 5 4 5 2 5      

5 Simplify by dividing numerator and 

denominator by 2. 

6 Write down both the solutions. 
 

 

Example 8 Solve 3x2 − 7x − 2 = 0. Give your solutions in surd form. 

a = 3, b = −7, c = −2 

2 4

2

b b ac
x

a

  
  

 

 

2( 7) ( 7) 4(3)( 2)

2(3)
x

     
  

7 73

6
x


  

So 
7 73

6
x


  or 

7 73

6
x


  

1 Identify a, b and c, making sure you 

get the signs right and write down 

the formula.  

Remember that 2 4b b ac    is 

all over 2a, not just part of it. 

2 Substitute a = 3, b = −7, c = −2 into 

the formula. 
 

3 Simplify. The denominator is 6 

when a = 3. A common mistake is 

to always write a denominator of 2. 

4 Write down both the solutions. 



 

 

Practice 

5 Solve, giving your solutions in surd form. 

 a 3x2 + 6x + 2 = 0 b 2x2 – 4x – 7 = 0 

6 Solve the equation x2 – 7x + 2 = 0 

 Give your solutions in the form 
a b

c


, where a, b and c are integers. 

7 Solve 10x2 + 3x + 3 = 5 

 Give your solution in surd form. 

 

Extend 

8 Choose an appropriate method to solve each quadratic equation, giving your answer in surd form 

when necessary. 

 a 4x(x – 1) = 3x – 2 

 b 10 = (x + 1)2 

 c x(3x – 1) = 10 

 

Answers 

5 a x = –1 + 
3

3
 or x = –1 – 

3

3
 b x = 1 + 

3 2

2
 or x = 1 – 

3 2

2
 

6 x = 
7 41

2


 or x = 

7 41

2


 

7 x = 
3 89

20

 
 or x = 

3 89

20

 
 

8 a x = 
7 17

8


 or x = 

7 17

8


 

 b x = –1 + 10  or x = –1 – 10  

 c x = –1
2

3
 or x = 2 

  

Hint 

Get all terms onto one 

side of the equation. 



 

 

Solving linear simultaneous equations 

using the elimination method 

Key points 

 Two equations are simultaneous when they are both true at the same time. 

 Solving simultaneous linear equations in two unknowns involves finding the value of each 

unknown which works for both equations. 

 Make sure that the coefficient of one of the unknowns is the same in both equations. 

 Eliminate this equal unknown by either subtracting or adding the two equations. 

Examples 

Example 1 Solve the simultaneous equations 3x + y = 5 and x + y = 1 

      3x + y = 5 

–      x + y = 1    

      2x       = 4 

So x = 2 

 

Using x + y = 1 

 2 + y = 1 

So y = −1 

 

Check: 

  equation 1: 3 × 2 + (−1) = 5   YES 

  equation 2: 2 + (−1) = 1         YES 

1 Subtract the second equation from 

the first equation to eliminate the y 

term. 

 

 

2 To find the value of y, substitute 

x = 2 into one of the original 

equations. 

 

3 Substitute the values of x and y into 

both equations to check your 

answers. 

Example 2 Solve x + 2y = 13 and 5x − 2y = 5 simultaneously. 

       x + 2y = 13 

+   5x − 2y =   5  

      6x         = 18 

So x = 3 

 

Using x + 2y = 13 

 3 + 2y = 13 

So y = 5 

 

Check: 

   equation 1: 3 + 2 × 5 = 13       YES 

   equation 2: 5 × 3 − 2 × 5 = 5   YES 

1 Add the two equations together to 

eliminate the y term. 

 

 

 

2 To find the value of y, substitute 

x = 3 into one of the original 

equations. 

 

3 Substitute the values of x and y into 

both equations to check your 

answers. 

 

  



 

 

Example 3 Solve 2x + 3y = 2 and 5x + 4y = 12 simultaneously. 

(2x + 3y = 2) × 4           8x + 12y =   8 

(5x + 4y = 12) × 3       15x + 12y = 36    

                                           7x          =  28 

 

So x = 4 

 

 

Using  2x  +  3y  = 2 

 2 × 4 + 3y = 2 

So y = −2 

 

Check: 

   equation 1: 2 × 4 + 3 × (−2) = 2    YES 

   equation 2: 5 × 4 + 4 × (−2) = 12  YES 

1 Multiply the first equation by 4 and 

the second equation by 3 to make 

the coefficient of y the same for 

both equations. Then subtract the 

first equation from the second 

equation to eliminate the y term. 

 

2 To find the value of y, substitute 

x = 4 into one of the original 

equations. 

 

3 Substitute the values of x and y into 

both equations to check your 

answers. 

 

Practice 

Solve these simultaneous equations. 

1 4x + y = 8 2 3x + y = 7 

 x + y = 5  3x + 2y = 5 

  

3 4x + y = 3 4 3x + 4y = 7 

 3x – y = 11   x – 4y = 5 

 

5 2x + y = 11 6 2x + 3y = 11 

 x – 3y = 9  3x + 2y = 4 

 

Answers 

1 x = 1, y = 4 2 x = 3, y = –2 

3 x = 2, y = –5 4 x = 3, y = –
1

2
 

5 x = 6, y = –1 6 x = –2, y = 5 

 

  



 

 

Solving linear simultaneous equations 

using the substitution method 

Key points 

 The subsitution method is the method most commonly used for A level. This is because it is 

the method used to solve linear and quadratic simultaneous equations. 

Examples 

Example 4 Solve the simultaneous equations y = 2x + 1 and 5x + 3y = 14 

5x + 3(2x + 1) = 14 

 

5x + 6x + 3 = 14 

11x + 3 = 14 

11x = 11 

So x = 1 

 

Using y = 2x + 1 

 y = 2 × 1 + 1 

So y = 3 

 

Check: 

   equation 1: 3 = 2 × 1 + 1           YES 

   equation 2: 5 × 1 + 3 × 3 = 14   YES 

1 Substitute 2x + 1 for y into the 

second equation. 

2 Expand the brackets and simplify. 

 

3 Work out the value of x. 

 

 

4 To find the value of y, substitute 

x = 1 into one of the original 

equations. 

 

5 Substitute the values of x and y into 

both equations to check your 

answers. 

Example 5 Solve 2x − y = 16 and 4x + 3y = −3 simultaneously. 

y = 2x − 16 

4x + 3(2x − 16) = −3 

 

4x + 6x − 48 = −3 

10x − 48 = −3 

10x = 45 

So x = 1
2

4   

Using y = 2x − 16 

     y = 2 × 1
2

4  − 16 

So y = −7 

 

Check: 

 equation 1: 2 × 1
2

4  – (–7) = 16      YES 

 equation 2: 4 ×  1
2

4  + 3 × (−7) = −3 YES 

1 Rearrange the first equation. 

2 Substitute 2x − 16 for y into the 

second equation. 

3 Expand the brackets and simplify. 

 

4 Work out the value of x. 

 

 

5 To find the value of y, substitute 

x = 1
2

4  into one of the original 

equations. 

 

6 Substitute the values of x and y into 

both equations to check your 

answers. 

 

 



 

 

Practice 

Solve these simultaneous equations. 

7 y = x – 4 8 y = 2x – 3 

 2x + 5y = 43  5x – 3y = 11 

9 2y = 4x + 5 10 2x = y – 2 

 9x + 5y = 22  8x – 5y = –11 

11 3x + 4y = 8 12 3y = 4x – 7 

 2x – y = –13  2y = 3x – 4 

 

13 3x = y – 1 14 3x + 2y + 1 = 0 

 2y – 2x = 3  4y = 8 – x 

 

Extend 

15 Solve the simultaneous equations 3x + 5y − 20 = 0 and 
3( )

2( )
4

y x
x y


  . 

 

Answers 

7 x = 9, y = 5 8 x = –2, y = –7 

9 x = 
1

2
, y = 3

1

2
 10 x = 

1

2
, y = 3 

11 x = –4, y = 5 12 x = –2, y = –5 

13 x = 
1

4
, y = 1

3

4
 14 x = –2, y = 2

1

2
 

15 x = –2
1

2
, y = 5

1

2
 

  



 

 

Solving linear and quadratic simultaneous 

equations 

Key points 

 Make one of the unknowns the subject of the linear equation (rearranging where necessary). 

 Use the linear equation to substitute into the quadratic equation. 

 There are usually two pairs of solutions. 

 

Examples 

Example 1 Solve the simultaneous equations y = x + 1 and x2 + y2 = 13 

x2 + (x + 1)2 = 13 

 

x2 + x2 + x + x + 1 = 13 

2x2 + 2x + 1 = 13 

 

2x2 + 2x − 12 = 0 

(2x − 4)(x + 3) = 0 

So x = 2 or x = −3 

 

Using y = x + 1 

When x = 2, y = 2 + 1 = 3 

When x = −3, y = −3 + 1 = −2 

 

So the solutions are  

 x = 2,  y = 3 and  x = −3, y = −2 

 

Check: 

 equation 1: 3 = 2 + 1               YES 

           and −2 = −3 + 1             YES 

 equation 2: 22 + 32 = 13           YES 

          and (−3)2 + (−2)2 = 13  YES 

1 Substitute x + 1 for y into the second 

equation. 

2 Expand the brackets and simplify. 

 

 

3 Factorise the quadratic equation. 

 

4 Work out the values of x. 

 

5 To find the value of y, substitute 

both values of x into one of the 

original equations. 

 

 

 

 

6 Substitute both pairs of values of x 

and y into both equations to check 

your answers. 

 

  



 

 

Example 2 Solve 2x + 3y = 5 and 2y2 + xy = 12 simultaneously. 

5 3

2

y
x


   

22 12
5 3

2
y

y
y

 
 

 


  

 

2
25 3

2
2 12y

y y



  

2 25 3 244 y yy    

2 5 24 0yy    

(y + 8)(y − 3) = 0 

So y = −8 or y = 3 

 

Using 2x + 3y = 5 

When y = −8,   2x + 3 × (−8) = 5,   x = 14.5 

When y = 3,     2x + 3 × 3 = 5,   x = −2 

 

So the solutions are  

   x = 14.5,  y = −8   and   x = −2, y = 3 

 

Check: 

 equation 1: 2 × 14.5 + 3 × (−8) = 5     YES 

            and  2 × (−2) + 3 × 3 = 5          YES 

 equation 2: 2×(−8)2 + 14.5×(−8) = 12 YES 

            and  2 × (3)2 + (−2) × 3 = 12    YES 

1 Rearrange the first equation. 

 

2  Substitute 
5 3

2

y
 for x into the 

second equation. Notice how it is 

easier to substitute for x than for y. 

3 Expand the brackets and simplify. 

 

 

4 Factorise the quadratic equation. 
 
5 Work out the values of y. 

 

6 To find the value of x, substitute 

both values of y into one of the 

original equations. 

 

 

 

 

7 Substitute both pairs of values of x 

and y into both equations to check 

your answers. 

Practice 

Solve these simultaneous equations. 

1 y = 2x + 1 2 y = 6 − x 

 x2 + y2 = 10  x2 + y2 = 20 

3 y = x – 3 4 y = 9 − 2x 

 x2 + y2 = 5  x2 + y2 = 17 

5 y = 3x – 5 6 y = x − 5 

 y = x2 − 2x + 1  y = x2 − 5x − 12 

7 y = x + 5 8 y = 2x – 1 

 x2 + y2 = 25  x2 + xy = 24 

9 y = 2x 10 2x + y = 11 

 y2 – xy = 8  xy = 15 

Extend 

11 x – y = 1 12 y – x = 2 

 x2 + y2 = 3  x2 + xy = 3  



 

 

Answers 

1 x = 1, y = 3 

 
9 13

,  
5 5

x y     

2 x = 2, y = 4 

 x = 4, y = 2 

3 x = 1, y = −2 

 x = 2, y = –1 

4 x = 4, y = 1 

 
16 13

,  
5 5

x y   

5 x = 3, y = 4 

 x = 2, y = 1 

6 x = 7, y = 2 

 x = −1, y = −6 

7 x = 0, y = 5 

 x = –5, y = 0 

8 x = 
8

3
 , y = 

19

3
  

 x = 3, y = 5 

9 x = –2, y = –4 

 x = 2, y = 4 

10 x = 
5

2
, y = 6 

 x = 3, y = 5 

11 x = 
1 5

2


, y = 

1 5

2

 
 

 x = 
1 5

2


, y = 

1 5

2

 
 

12 x = 
1 7

2

 
, y = 

3 7

2


 

 x = 
1 7

2

 
, y = 

3 7

2


 



 

 

Straight line graphs 

Key points 

 A straight line has the equation y = mx + c, where m is 

the gradient and c is the y-intercept (where x = 0). 

 The equation of a straight line can be written in the form 

ax + by + c = 0, where a, b and c are integers. 

 When given the coordinates (x1, y1) and (x2, y2) of two 

points on a line the gradient is calculated using the 

formula 2 1

2 1

y y
m

x x





  

Examples 

Example 1 A straight line has gradient 
1

2
  and y-intercept 3. 

Write the equation of the line in the form ax + by + c = 0. 

m = 
1

2
  and c = 3 

So y = 
1

2
 x + 3 

1

2
x + y – 3 = 0 

 

x + 2y − 6 = 0 

1 A straight line has equation 

y = mx + c. Substitute the gradient 

and y-intercept given in the question 

into this equation. 

2 Rearrange the equation so all the 

terms are on one side and 0 is on  

the other side.  

3 Multiply both sides by 2 to 

eliminate the denominator. 

 

Example 2 Find the gradient and the y-intercept of the line with the equation 3y − 2x + 4 = 0. 

3y − 2x + 4 = 0 

3y = 2x − 4 

2 4

3 3
y x    

Gradient = m = 
2

3
 

y-intercept = c = 
4

3
  

1 Make y the subject of the equation. 

 

2 Divide all the terms by three to get 

the equation in the form y = … 
 

3 In the form y = mx + c, the gradient 

is m and the y-intercept is c. 

 

  



 

 

Example 3 Find the equation of the line which passes through the point (5, 13) and has gradient 3. 

m = 3 

y = 3x + c 

 

 

13 = 3 × 5 + c 

 

13 = 15 + c 

c = −2 

y = 3x − 2 

1 Substitute the gradient given in the 

question into the equation of a 

straight line y = mx + c. 

2 Substitute the coordinates x = 5 and 

y = 13 into the equation. 

3 Simplify and solve the equation. 

 

4 Substitute c = −2 into the equation 

y = 3x + c 

 

Example 4 Find the equation of the line passing through the points with coordinates (2, 4) and (8, 7). 

1 2x  , 2 8x  , 1 4y   and 2 7y   

2 1

2 1

7 4 3 1

8 2 6 2

y y
m

x x

 
   

 
 

 

1

2
y x c    

1
4 2

2
c    

 c = 3 

1
3

2
y x   

1 Substitute the coordinates into the 

equation 2 1

2 1

y y
m

x x





 to work out 

the gradient of the line. 

2 Substitute the gradient into the 

equation of a straight line 

y = mx + c. 

3 Substitute the coordinates of either 

point into the equation. 

4 Simplify and solve the equation. 

5 Substitute c = 3 into the equation 

1

2
y x c   

 

  



 

 

Practice 

1 Find the gradient and the y-intercept of the following equations. 

 a y = 3x + 5 b y = 
1

2
 x – 7  

 c 2y = 4x – 3 d x + y = 5 

 e 2x – 3y – 7 = 0 f 5x + y – 4 = 0 

2 Copy and complete the table, giving the equation of the line in the form y = mx + c. 

Gradient y-intercept Equation of the line 

5 0  

–3 2  

4 –7  

3 Find, in the form ax + by + c = 0 where a, b and c are integers, an equation for each of the lines 

with the following gradients and y-intercepts. 

 a gradient 
1

2
 ,  y-intercept –7 b gradient 2,  y-intercept 0 

 c gradient 
2

3
,  y-intercept 4 d gradient –1.2,  y-intercept –2 

4 Write an equation for the line which passes though the point (2, 5) and has gradient 4. 

5 Write an equation for the line which passes through the point (6, 3) and has gradient 
2

3
  

6 Write an equation for the line passing through each of the following pairs of points. 

 a (4, 5),  (10, 17) b (0, 6),  (–4, 8) 

 c (–1, –7),  (5, 23) d (3, 10),  (4, 7) 

 

Extend 

7 The equation of a line is 2y + 3x – 6 = 0. 

Write as much information as possible about this line. 

  

Hint 

Rearrange the equations 

to the form y = mx + c 



 

 

Answers 

1 a m = 3, c = 5 b m = 
1

2
 , c = –7  

 c m = 2, c = 
3

2
  d m = –1, c = 5 

 e m = 
2

3
, c = 

7

3
 or –2

1

3
  f m = –5, c = 4 

2  

Gradient y-intercept Equation of the line 

5 0 y = 5x 

–3 2 y = –3x + 2 

4 –7 y = 4x –7 

3 a x + 2y + 14 = 0 b 2x – y = 0 

 c 2x – 3y + 12 = 0 d 6x + 5y + 10 = 0 

4 y = 4x – 3 

5 y = 
2

3
 x + 7 

6 a y = 2x – 3 b y = 
1

2
 x + 6 

 c y = 5x –2 d y = –3x + 19 

7 
3

3
2

y x   , the gradient is 
3

2
  and the y-intercept is 3. 

The line intercepts the axes at (0, 3) and (2, 0). 

Students may sketch the line or give coordinates that lie on the line such as 
3

1,
2

 
 
 

 or  4, 3 . 

 

 

  



 

 

Parallel and perpendicular lines 
 

 A LEVEL LINKS 

 Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems 
 

Key points 

 When lines are parallel they have the same 

gradient. 

 A line perpendicular to the line with equation 

y = mx + c has gradient 
1

m
 . 

 

Examples 

Example 1 Find the equation of the line parallel to y = 2x + 4 which passes through  

the point (4, 9). 

y = 2x + 4 

m = 2 

y = 2x + c 

 

9 = 2 × 4 + c 

 

9 = 8 + c 

c = 1 

y = 2x + 1 

1 As the lines are parallel they have 

the same gradient. 

2 Substitute m = 2 into the equation of 

a straight line y = mx + c. 

3 Substitute the coordinates into the 

equation y = 2x + c 

4 Simplify and solve the equation. 

 

5 Substitute c = 1 into the equation 

y = 2x + c 

Example 2 Find the equation of the line perpendicular to y = 2x − 3 which passes through  

the point (−2, 5). 

y = 2x − 3 

m = 2 

1 1

2m
    

1

2
y x c    

1
5 ( 2)

2
c      

 

5 = 1 + c 

c = 4 

1
4

2
y x    

1 As the lines are perpendicular, the 

gradient of the perpendicular line  

is 
1

m
 . 

2 Substitute m = 
1

2
  into y = mx + c. 

3 Substitute the coordinates (–2, 5) 

into the equation 
1

2
y x c    

4 Simplify and solve the equation. 

 

5 Substitute c = 4 into 
1

2
y x c   . 



 

 

Example 3 A line passes through the points (0, 5) and (9, −1). 

Find the equation of the line which is perpendicular to the line and passes through  

its midpoint. 

1 0x  , 2 9x  , 1 5y   and 2 1y    

2 1

2 1

1 5

9 0

6 2
      

9 3

y y
m

x x

  
 

 


  

 

1 3

2m
   

 

3

2
y x c    

 

Midpoint = 
0 9 5 ( 1) 9

, , 2
2 2 2

     
   

   
 

3 9
2

2 2
c    

19

4
c     

3 19

2 4
y x   

1 Substitute the coordinates into the 

equation 2 1

2 1

y y
m

x x





 to work out 

the gradient of the line. 

 

2 As the lines are perpendicular, the 

gradient of the perpendicular line  

is 
1

m
 . 

3 Substitute the gradient into the 

equation y = mx + c. 

 

4 Work out the coordinates of the 

midpoint of the line. 

 

5 Substitute the coordinates of the 

midpoint into the equation. 

6 Simplify and solve the equation. 

7 Substitute 
19

4
c    into the 

equation 
3

2
y x c  . 

 

Practice 

1 Find the equation of the line parallel to each of the given lines and which passes through each of 

the given points. 

 a y = 3x + 1    (3, 2) b y = 3 – 2x    (1, 3) 

 c 2x + 4y + 3 = 0    (6, –3) d 2y –3x + 2 = 0    (8, 20) 

2 Find the equation of the line perpendicular to y = 
1

2
x – 3 which 

passes through the point (–5, 3). 

 

3 Find the equation of the line perpendicular to each of the given lines and which passes through 

each of the given points. 

 a y = 2x – 6    (4, 0) b y = 
1

3
 x + 

1

2
    (2, 13) 

 c x –4y – 4 = 0    (5, 15) d 5y + 2x – 5 = 0    (6, 7) 

Hint 

If m = 
a

b
 then the negative 

reciprocal 
1 b

m a
    



 

 

4 In each case find an equation for the line passing through the origin which is also perpendicular 

to the line joining the two points given. 

 a (4, 3),  (–2, –9) b (0, 3),  (–10, 8) 

 

Extend 

5 Work out whether these pairs of lines are parallel, perpendicular or neither. 

 a y = 2x + 3 b y = 3x  c y = 4x – 3 

  y = 2x – 7  2x + y – 3 = 0  4y + x = 2 

 

 d 3x – y + 5 = 0 e 2x + 5y – 1 = 0 f 2x – y = 6 

  x + 3y = 1  y = 2x + 7  6x – 3y + 3 = 0 

6 The straight line L1 passes through the points A and B with coordinates (–4, 4) and (2, 1), 

respectively. 

 a Find the equation of L1 in the form ax + by + c = 0 

 The line L2 is parallel to the line L1 and passes through the point C with coordinates (–8, 3). 

 b Find the equation of L2 in the form ax + by + c = 0 

 The line L3 is perpendicular to the line L1 and passes through the origin. 

 c Find an equation of L3 

 

Answers 

1 a y = 3x –7 b y = –2x + 5 

 c y = –
1

2
x  d y = 

3

2
x + 8 

2 y = −2x – 7 

3 a y = –
1

2
x + 2 b y = 3x + 7 

 c y = –4x + 35 d y = 
5

2
x – 8 

4 a y = –
1

2
x b y = 2x 

5 a Parallel b Neither c Perpendicular  

 d Perpendicular e Neither f Parallel 

6 a x + 2y – 4 = 0 b x + 2y + 2 = 0 c y = 2x 



 

 

Rearranging equations 

Key points 

 To change the subject of a formula, get the terms containing the subject on one side and 

everything else on the other side. 

 You may need to factorise the terms containing the new subject. 

Examples 

Example 1 Make t the subject of the formula v = u + at. 

v = u + at 

 

v − u = at 

v u
t

a


   

1 Get the terms containing t on one 

side and everything else on the other 

side. 

2 Divide throughout by a. 

 

Example 2 Make t the subject of the formula r = 2t − πt. 

r = 2t − πt 
 

 

r = t(2 − π) 

2

r
t





  

1 All the terms containing t are 

already on one side and everything 

else is on the other side. 

2 Factorise as t is a common factor. 

3 Divide throughout by 2 − π. 

 

Example 3 Make t the subject of the formula 
3

5 2

t r t
 . 

3

5 2

t r t
  

2t + 2r = 15t 

2r = 13t 

2

13

r
t    

1 Remove the fractions first by 

multiplying throughout by 10. 

2 Get the terms containing t on one 

side and everything else on the other 

side and simplify. 

3 Divide throughout by 13. 

 

  



 

 

Example 4 Make t the subject of the formula 
3 5

1

t
r

t





. 

3 5

1

t
r

t





 

r(t − 1) = 3t + 5 

rt − r = 3t + 5 

rt − 3t = 5 + r 

t(r − 3) = 5 + r 

5

3

r
t

r





  

1 Remove the fraction first by 

multiplying throughout by t − 1. 

2 Expand the brackets. 

3 Get the terms containing t on one 

side and everything else on the other 

side. 

4 Factorise the LHS as t is a common 

factor. 

5 Divide throughout by r − 3. 

Practice 

Change the subject of each formula to the letter given in the brackets. 

1 C = πd   [d] 2 P = 2l + 2w   [w] 3 D = 
S

T
   [T] 

4 
q r

p
t


    [t] 5 u = at – 

1

2
t   [t] 6 V = ax + 4x   [x] 

7 
7 7 2

2 3

y x y 
    [y] 8 

2 1

3

a
x

a





   [a] 9 

b c
x

d


    [d] 

10 
7 9

2

g
h

g





   [g] 11 e(9 + x) = 2e + 1   [e] 12 

2 3

4

x
y

x





   [x] 

13 Make r the subject of the following formulae. 

 a A = πr2 b 34

3
V r  c P = πr + 2r d 22

3
V r h  

14 Make x the subject of the following formulae. 

 a 
xy ab

z cd
  b 

2

4 3cx z

d py


  

15 Make sin B the subject of the formula 
sin sin

a b

A B
  

16 Make cos B the subject of the formula b2 = a2 + c2 – 2ac cos B. 

Extend 

17 Make x the subject of the following equations. 

 a ( ) 1
p

sx t x
q

    b 
2

3
( 2 ) ( )

p p
ax y x y

q q
     



 

 

Answers 

1 d = 
C


 2 

2

2

P l
w


  3 

S
T

D
  

4 
q r

t
p


  5 

2

2 1

u
t

a



 6 

4

V
x

a



 

7 y = 2 + 3x 8 
3 1

2

x
a

x





 9 

x

cb
d


  

10 
2 9

7

h
g

h





 11 

1

7
e

x



 12 

4 3

2

y
x

y





 

13 a 
A

r


  b 3
3

4

V
r


   

 c 
2

P
r





 d 

3

2

V
r

h
  

14 a 
abz

x
cdy

  b 
2

3

4

dz
x

cpy
  

15 
sin

sin
b A

B
a

  

16 
2 2 2

cos
2

a c b
B

ac

 
  

17 a 
q pt

x
q ps





 b 

3 2 (3 2 )

3 3

py pqy y q
x

p apq aq

 
 

 
 

 

 


